MMM
YYYY
Ultracompact and high-efficiency liquid-crystal-on-silicon light engines for augmented reality glasses
应用于增强现实眼镜的超紧凑高效硅基液晶光引擎
リアルメガネを強化する超コンパクトで高効率なシリコンベース液晶光エンジン
증강현실 안경을 위한 초소형 고효율 실리콘 기반 액정광 엔진
Motor de luz LCD de silicio ultracompacto y eficiente para gafas de realidad aumentada
Moteur optique LCD ultra - compact et efficace à base de silicium pour lunettes de réalité augmentée
Сверхкомпактный высокоэффективный жидкокристаллический световой двигатель на основе кремния для очков дополненной реальности
Zhenyi Luo 罗桢埸 ¹, Yuqiang Ding 丁玉强 ¹, Fenglin Peng ², Guohua Wei ², Yun Wang ², Shin-Tson Wu 吴诗聪 ¹
¹ College of Optics and Photonics, University of Central Florida, Orlando FL 32816, USA
² Meta Reality Labs, 9845 Willows Road NE, Redmond, WA 98052, USA
Opto-Electronic Advances, 8 May 2024
Abstract

In lightweight augmented reality (AR) glasses, the light engines must be very compact while keeping a high optical efficiency to enable longtime comfortable wearing and high ambient contrast ratio. “Liquid-crystal-on-silicon (LCoS) or micro-LED, who wins?” is recently a heated debate question.

Conventional LCoS system is facing tremendous challenges due to its bulky illumination systems; it often incorporates a bulky polarizing beam splitter (PBS) cube. To minimize the formfactor of an LCoS system, here we demonstrate an ultracompact illumination system consisting of an in-coupling prism, and a light guide plate with multiple parallelepiped extraction prisms.

The overall module volume including the illumination optics and an LCoS panel (4.4-μm pixel pitch and 1024x1024 resolution elements), but excluding the projection optics, is merely 0.25 cc (cm³). Yet, our system exhibits an excellent illuminance uniformity and an impressive optical efficiency (36%–41% for a polarized input light). Such an ultracompact and high-efficiency LCoS illumination system is expected to revolutionize the next-generation AR glasses.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Multifunctional mixed analog/digital signal processor based on integrated photonics
Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses
Active tuning of anisotropic phonon polaritons in natural van der Waals crystals with negative permittivity substrates and its application in energy transport
Photo-driven fin field-effect transistors
Generation of structured light beams with polarization variation along arbitrary spatial trajectories using tri-layer metasurfaces
High-intensity spatial-mode steerable frequency up-converter toward on-chip integration
Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
Optical scanning endoscope via a single multimode optical fiber



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper