MMM
YYYY
Physics and applications of terahertz metagratings
太赫兹元光栅的物理和应用
テラヘルツセル格子の物理的および応用
테라헤르츠 메타그리드의 물리적 및 응용
Física y aplicaciones de rejillas de elementos de terahertz
Physique et applications des méta - réseaux Térahertz
Физика и применение терагерцовой решетки
Shreeya Rane ¹, Shriganesh Prabhu ², Dibakar Roy Chowdhury ¹
¹ Department of Physics, École Centrale School of Engineering, Mahindra University, Hyderabad, Telangana, India
² Department of Condensed Matter Physics and Material Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, India
Opto-Electronic Science, 3 September 2024
Abstract

One dimensional sub-wavelength gratings, also known as metagratings have attracted enormous attention due to the relatively simpler design configurations with versatile application potentials. In recent times, these metagratings have played crucial roles in terahertz frequency domain to realize several fascinating effects.

It has been demonstrated that the terahertz characteristics of these metagratings can be modified by carefully designing the grating geometry along with meticulously tuning the material characteristics. Such variations in grating design have led to enhanced device performances. In addition, suitably designed metagratings are capable of exciting strong evanescent orders that can be exploited in ultrasensitive sensing, optical trapping, non-linearity, etc.

Based on the tremendous potentials offered by the planar geometry (ease of fabrication) along with diverse utilities, we have reviewed few representative works pertaining to terahertz metagratings in this article. Hence, we have discussed metagratings based antireflection coating and a polarization beam splitter operating in THz region modelled using simplified model method.

Further, we have discussed experimental detection of evanescent waves excited in metagratings utilizing Fourier transformed terahertz spectroscopy (FTTS) technique. FTTS is a unique technique because of its ability of simultaneous detection of propagating and non-propagating orders.

Next, we have discussed applications of metagratings in sensing trace amount of analytes. Considering the increasing interests in these one-dimensional artificial subwavelength structures, we believe, our article will be useful for the researchers willing to begin work on terahertz subwavelength gratings.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Opto-Electronic Science_4
Reviews and Discussions
https://www.hotpaper.io/index.html
In-situ and ex-situ twisted bilayer liquid crystal computing platform for reconfigurable image processing
Highly textured single-crystal-like perovskite films for large-area, high-performance photodiodes
Robust performance of PTQ10:DTY6 in halogen-free photovoltaics across deposition techniques and configurations for industrial scale-up
Surpassing the diffraction limit in long-range laser engineering via cross-scale vectorial optical field manipulation: perspectives and outlooks
Spatiotemporal multiplexed photonic reservoir computing: parallel prediction for the high-dimensional dynamics of complex semiconductor laser network
Filament based ionizing radiation sensing
Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
Partially coherent optical chip enables physical-layer public-key encryption
Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper