Tunable vertical cavity microlasers based on MAPbI₃ phase change perovskite
基于MAPbI₃ 相变钙钛矿的可调谐垂直腔微激光器
MAPbI₃ 相転移ペロブスカイトに基づく調整可能な垂直空洞マイクロレーザ
MAPbI₃ 상변 칼슘 티타늄 기반 튜닝 가능한 수직 캐비티 마이크로레이저
Microláser de cavidad vertical tunable basado en Perovskita de cambio de fase MAPbI₃
Microlaser à cavité verticale accordable à base de pérovskite à changement de phase MAPbI₃
настраиваемый вертикальный микролазер на основе фазового перовскита MAPbI₃
Rongzi Wang ¹, Ying Su ¹, Hongji Fan ¹, Chengxiang Qi ¹, Shuang Zhang ² ³ ⁴, Tun Cao ¹
¹ School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
中国 大连 大连理工大学光电工程与仪器科学学院
² New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong 999077, China
中国 香港 香港大学物理系新基石科学实验室
³ Department of Electrical & Electronic Engineering, University of Hong Kong, Hong Kong 999077, China
中国 香港 香港大学电气电子工程系
⁴ Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518052, China
中国 深圳 香港大学生命科学与能源材料创新研究院(MILES)
Perovskite semiconductors show great promise as gain media for all-solution-processed single-mode microlasers. However, despite the recent efforts to improve their lasing performance, achieving tunable single-mode microlasers remains challenging.
In this work, we address this challenge by demonstrating a tunable vertical cavity surface emitting laser (VCSEL) employing a tunable gain medium of halide phase-change perovskites-specifically MAPbI₃ perovskite, sandwiched between two highly reflective mirrors composed of bottom-distributed Bragg reflectors (DBRs).
This VCSEL possesses single-mode lasing emission with a low threshold of 23.5 μJ cm⁻² under 160 K, attributed to strong optical confinement in the high-quality (Q) cavity. Upon the phase change of MAPbI₃ perovskite, both its gain and dielectric constant changes dramatically, enabling a wide (Δλ >9 nm) and temperature-sensitive (0.30 nm K⁻¹ rate) spectral tunability of lasing mode in the near-infrared (N-IR) region.
The laser displays excellent stability, demonstrating an 80% lifetime of >2.4×10⁷ pulses excitation. Our findings may provide a versatile platform for the next generation of tunable coherent light sources.