Physics-data-driven intelligent optimization for large-aperture metalenses
物理数据驱动的大口径金属透镜智能优化
物理データ駆動の大口径金属レンズのインテリジェント最適化
물리적 데이터 기반 대구경 금속 렌즈 지능형 최적화
Optimización inteligente de lentes metálicas de gran calibre impulsadas por datos físicos
Optimisation intelligente des lentilles métalliques de grand calibre pilotées par des données physiques
Интеллектуальная оптимизация крупнокалиберных металлических линз на основе физических данных
Yingli Ha 哈颖丽 ¹ ² ³, Yu Luo 罗宇 ¹ ² ³, Mingbo Pu 蒲明博 ¹ ² ³ ⁴, Fei Zhang 张飞 ¹ ² ³, Qiong He 何琼 ¹ ², Jinjin Jin 靳金金 ¹ ², Mingfeng Xu 徐明峰 ¹ ² ³ ⁴, Yinghui Guo 郭迎辉 ¹ ² ³ ⁴, Xiaogang Li 李小岗 ⁵, Xiong Li 李雄 ¹ ² ⁴, Xiaoliang Ma 马晓亮 ¹ ² ⁴, Xiangang Luo 罗先刚 ¹ ² ³ ⁴
¹ National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光场调控科学技术全国重点实验室
² State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 微细加工光学技术国家重点实验室
³ Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
中国 成都 中国科学院光电技术研究所 矢量光场研究中心
⁴ School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学光电学院
⁵ Tianfu Xinglong Lake Laboratory, Chengdu 610299, China
中国 成都 天府兴隆湖实验室
Metalenses have gained significant attention and have been widely utilized in optical systems for focusing and imaging, owing to their lightweight, high-integration, and exceptional-flexibility capabilities. Traditional design methods neglect the coupling effect between adjacent meta-atoms, thus harming the practical performance of meta-devices. The existing physical/data-driven optimization algorithms can solve the above problems, but bring significant time costs or require a large number of data-sets.
Here, we propose a physics-data-driven method employing an “intelligent optimizer” that enables us to adaptively modify the sizes of the meta-atom according to the sizes of its surrounding ones. The implementation of such a scheme effectively mitigates the undesired impact of local lattice coupling, and the proposed network model works well on thousands of data-sets with a validation loss of 3×10−3. Based on the “intelligent optimizer”, a 1-cm-diameter metalens is designed within 3 hours, and the experimental results show that the 1-mm-diameter metalens has a relative focusing efficiency of 93.4% (compared to the ideal focusing efficiency) and a Strehl ratio of 0.94.
Compared to previous inverse design method, our method significantly boosts designing efficiency with five orders of magnitude reduction in time. More generally, it may set a new paradigm for devising large-aperture meta-devices.