MMM
YYYY
Laser-induced stretchable bioelectronic interfaces by frozen exfoliation
冷冻剥离激光诱导可拉伸生物电子界面
凍結ストリップレーザ誘起引張性生体電子界面
냉동 박리 레이저 유도 스트레칭 생물 전자 인터페이스
Interfaz bioelectrónica estirable inducida por láser de desprendimiento congelado
Interface bioélectronique étirable induite par laser cryopeeling
Лазерная индукция замораживания может растягивать биоэлектронный интерфейс
Xiaowei Li 李晓炜
Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学 机械与车辆学院 激光微纳制造研究所
Opto-Electronic Advances, 4 June 2024
Abstract

Highly stretchable laser-induced graphene—hydrogel film interfaces in flexible electronic materials are fabricated by frozen exfoliation, and exhibit high stretchability, durability, and design flexibility. This technology offers an advanced technological pathway for manufacturing highly flexible substrates. They can be utilized in numerous complex surface applications, providing an advanced technological pathway for manufacturing highly flexible substrates in the future.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Physics and applications of terahertz metagratings
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Smart photonic wristband for pulse wave monitoring
Multifunctional mixed analog/digital signal processor based on integrated photonics
Three-dimensional multichannel waveguide grating filters
Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper