MMM
YYYY
Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response
铁电调制氧化石墨烯的费米能级以增强SERS响应
SERS応答を増強するための強誘電変調酸化グラフェンのFermi準位
철전기는 SERS 응답을 강화하기 위해 산화 그래핀의 페미 에너지 준위를 변조한다
Ferroelectric modular el nivel de energía Fermi del Grafeno de óxido para mejorar la respuesta Sers
Modulation ferroélectrique du niveau de Fermi de l'oxyde de Graphène pour améliorer la réponse sers
Ферми - уровень железоэлектрической модуляции оксида графена для усиления реакции SERS
Mingrui Shao 邵明瑞 ¹, Chang Ji 纪昌 ¹, Jibing Tan 谭吉兵 ¹, Baoqiang Du 杜宝强 ¹, Xiaofei Zhao 赵晓菲 ¹, Jing Yu 郁菁 ¹, Baoyuan Man 满宝元 ¹, Kaichen Xu 徐凯臣 ², Chao Zhang 张超 ¹, Zhen Li 李振 ¹
¹ Institute of Materials and Clean Energy, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
中国 济南 山东师范大学物理与电子科学学院 材料与清洁能源研究院
² State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310030, China
中国 杭州 浙江大学机械工程学院 流体动力与机电系统国家重点实验室
Opto-Electronic Advances, 15 November 2023
Abstract

Surface-enhanced Raman scattering (SERS) substrates based on chemical mechanism (CM) have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability, uniform molecular adsorption and controllable molecular orientation. However, it remains huge challenges to achieve the optimal SERS signal for diverse molecules with different band structures on the same substrate.

Herein, we demonstrate a graphene oxide (GO) energy band regulation strategy through ferroelectric polarization to facilitate the charge transfer process for improving SERS activity. The Fermi level (Ef) of GO can be flexibly manipulated by adjusting the ferroelectric polarization direction or the temperature of the ferroelectric substrate. Experimentally, kelvin probe force microscopy (KPFM) is employed to quantitatively analyze theEf of GO.

Theoretically, the density functional theory calculations are also performed to verify the proposed modulation mechanism. Consequently, the SERS response of probe molecules with different band structures (R6G, CV, MB, PNTP) can be improved through polarization direction or temperature changes without the necessity to redesign the SERS substrate.

This work provides a novel insight into the SERS substrate design based on CM and is expected to be applied to other two-dimensional materials.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Physics and applications of terahertz metagratings
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Smart photonic wristband for pulse wave monitoring
Multifunctional mixed analog/digital signal processor based on integrated photonics
Three-dimensional multichannel waveguide grating filters
Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper