MMM
YYYY
Wide-spectrum optical synthetic aperture imaging via spatial intensity interferometry
空间强度干涉法实现宽光谱光学合成孔径成像
空間強度干渉法による広いスペクトル光合成開口イメージングの実現
공간 강도 간섭법은 넓은 스펙트럼 광학 합성 공경 영상을 실현한다
Imagen de apertura sintética óptica de amplio espectro realizada por interferencia de intensidad espacial
Interférométrie d'intensité spatiale pour l'imagerie optique de synthèse d'ouverture à large spectre
интерферометрия пространственной интенсивности
Chunyan Chu 褚春艳 ¹ ², Zhentao Liu 刘震涛 ³ ⁴, Mingliang Chen 陈明亮 ³ ⁴, Xuehui Shao 邵学辉 ⁵, Guohai Situ 司徒国海 ³ ⁴, Yuejin Zhao 赵跃进 ¹ ², Shensheng Han 韩申生 ³ ⁶
¹ Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
中国 北京 精密光电测试仪器及技术北京市重点实验室
² School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
中国 北京 北京理工大学光电学院
³ Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
中国 上海 中国科学院 上海光学精密机械研究所
⁴ University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学
⁵ National Laboratory of Aerospace Intelligent Control Technology, Beijing 100089, China
中国 北京 宇航智能控制技术全国重点实验室
⁶ Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
中国 杭州 中国科学院大学 杭州高等研究院
Opto-Electronic Advances, 10 March 2023
Abstract

High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths. Optical aperture synthesis is an important high-resolution imaging technology used in astronomy. Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations, and the technical difficulty increases rapidly as the wavelength decreases. The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations, but suffers from a narrow spectral bandwidth which results in a lack of effective photons.

In this study, we propose optical synthetic aperture imaging based on spatial intensity interferometry. This not only realizes diffraction-limited optical aperture synthesis in a single shot, but also enables imaging with a wide spectral bandwidth, which greatly improves the optical energy efficiency of intensity interferometry. And this method is insensitive to the optical path difference between the sub-apertures. Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light, whose maximum optical path difference between the sub-apertures reaches 69λ.

This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Physics and applications of terahertz metagratings
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Smart photonic wristband for pulse wave monitoring
Multifunctional mixed analog/digital signal processor based on integrated photonics
Three-dimensional multichannel waveguide grating filters
Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Highly sensitive and real-simultaneous CH₄/C₂H₂ dual-gas LITES sensor based on Lissajous pattern multi-pass cell
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper