MMM
YYYY
Solvent-free fabrication of broadband WS₂ photodetectors on paper
无溶剂制备宽带WS₂探测器
無溶媒で広帯域WSタンパ検出器を作製する
무용제 제조 광대역 WS₂ 탐지기
Preparación sin disolvente de detectores WS de banda ancha
Détecteur ws₂ à large bande préparé sans solvant
 Подготовка широкополосного детектора WSneneneed без растворителя 
Wenliang Zhang 张文亮 ¹, Onur Çakıroğlu ¹, Abdullah Al-Enizi ², Ayman Nafady ², Xuetao Gan 甘雪涛 ³, Xiaohua Ma 马晓华 ⁴, Sruthi Kuriakose ¹, Yong Xie 谢涌 ¹ ⁴, Andres Castellanos-Gomez ¹
¹ Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Madrid E-28049, Spain
² Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
³ Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
中国 西安 西北工业大学物理科学与技术学院 光场调控与信息感知工业和信息化部重点实验室 陕西省光信息技术重点实验室
⁴ School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China
中国 西安 西安电子科技大学 先进材料与纳米科技学院
Opto-Electronic Advances, 9 December 2022
Abstract

Paper-based devices have attracted extensive attention due to the growing demand for disposable flexible electronics. Herein, we integrate semiconducting devices on cellulose paper substrate through a simple abrasion technique that yields high-performance photodetectors.

A solvent-free WS₂ film deposited on paper favors an effective electron-hole separation and hampers recombination. The as-prepared paper-based WS₂ photodetectors exhibit a sensitive photoresponse over a wide spectral range spanning from ultraviolet (365 nm) to near-infrared (940 nm). Their responsivity value reaches up to ~270 mA W⁻¹ at 35 V under a power density of 35 mW cm⁻². A high performance photodetector was achieved by controlling the environmental exposure as the ambient oxygen molecules were found to decrease the photoresponse and stability of the WS₂ photodetector.

Furthermore, we have built a spectrometer using such a paper-based WS₂ device as the photodetecting component to illustrate its potential application. The present work could promote the development of cost-effective disposable photodetection devices.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Physics and applications of terahertz metagratings
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Smart photonic wristband for pulse wave monitoring
Multifunctional mixed analog/digital signal processor based on integrated photonics
Three-dimensional multichannel waveguide grating filters
Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Highly sensitive and real-simultaneous CH₄/C₂H₂ dual-gas LITES sensor based on Lissajous pattern multi-pass cell
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper