MMM
YYYY
SARS-CoV-2 ORF10 suppresses the antiviral innate immune response by degrading MAVS through mitophagy
SARS-CoV-2 ORF10 通过线粒体自噬降解 MAVS 来抑制抗病毒先天免疫反应
SARS-CoV-2 ORF10は、マイトファジーによってMAVSを分解することにより、抗ウイルス性の自然免疫応答を抑制します。
SARS-CoV-2 ORF10은 미토파지를 통해 MAVS를 분해하여 항바이러스 선천 면역 반응을 억제합니다.
SARS-CoV-2 ORF10 suprime la respuesta inmune innata antiviral al degradar MAVS a través de mitofagia
Le SARS-CoV-2 ORF10 supprime la réponse immunitaire innée antivirale en dégradant le MAVS par mitophagie
SARS-CoV-2 ORF10 подавляет противовирусный врожденный иммунный ответ, разрушая MAVS посредством митофагии.
Xingyu Li 李兴宇 ¹, Peili Hou 侯佩莉 ¹, Wenqing Ma 马文青 ¹, Xuefeng Wang 王雪峰 ², Hongmei Wang 王洪梅 ¹, Zhangping Yu ¹, Huasong Chang ¹, Tiecheng Wang 王铁成 ², Song Jin ¹, Xue Wang ¹, Wenqi Wang ¹ ², Yudong Zhao ², Yong Zhao ², Chunqing Xu ¹, Xiaomei Ma ¹, Yuwei Gao 高玉伟 ², Hongbin He 何洪彬 ¹
¹ Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan, 250014, People’s Republic of China
中国 济南 山东师范大学生命科学学院 反刍动物疾病研究中心
² Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People’s Republic of China
中国 长春 中国农业科学院长春兽医研究所
Cellular & Molecular Immunology, 29 November 2021
Abstract

The global coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused severe morbidity and mortality in humans. It is urgent to understand the function of viral genes. However, the function of open reading frame 10 (ORF10), which is uniquely expressed by SARS-CoV-2, remains unclear.

In this study, we showed that overexpression of ORF10 markedly suppressed the expression of type I interferon (IFN-I) genes and IFN-stimulated genes. Then, mitochondrial antiviral signaling protein (MAVS) was identified as the target via which ORF10 suppresses the IFN-I signaling pathway, and MAVS was found to be degraded through the ORF10-induced autophagy pathway. Furthermore, overexpression of ORF10 promoted the accumulation of LC3 in mitochondria and induced mitophagy. Mechanistically, ORF10 was translocated to mitochondria by interacting with the mitophagy receptor Nip3-like protein X (NIX) and induced mitophagy through its interaction with both NIX and LC3B. Moreover, knockdown of NIX expression blocked mitophagy activation, MAVS degradation, and IFN-I signaling pathway inhibition by ORF10.

Consistent with our observations, in the context of SARS-CoV-2 infection, ORF10 inhibited MAVS expression and facilitated viral replication. In brief, our results reveal a novel mechanism by which SARS-CoV-2 inhibits the innate immune response; that is, ORF10 induces mitophagy-mediated MAVS degradation by binding to NIX.
Cellular & Molecular Immunology_1
Cellular & Molecular Immunology_2
Cellular & Molecular Immunology_3
Cellular & Molecular Immunology_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Double topological phase singularities in highly absorbing ultra-thin film structures for ultrasensitive humidity sensing
Soliton microcombs in optical microresonators with perfect spectral envelopes
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
A novel approach towards robust construction of physical colors on lithium niobate crystal
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
High-frequency enhanced ultrafast compressed active photography
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
High-efficiency RGB achromatic liquid crystal diffractive optical elements
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
Ferroelectric domain engineering of lithium niobate



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper