MMM
YYYY
Recursive Multi-Tensor Contraction for XEB Verification of Quantum Circuits
量子电路XEB验证的递归多变分法和张量压缩
量子回路のXEB検証のための再帰的マルチテンソル収縮
양자 회로 XEB 검증 의 재 귀 다 장 량 압축
Compresión multitensor recursiva verificada por el circuito cuántico XEB
Compression multitensorielle récursive pour la vérification XEB des circuits quantiques
Рекурсивное мульти-тензорное сжатие для проверки квантовых схем с помощью XEB
Gleb Kalachev ¹ ², Pavel Panteleev ¹ ², Man-Hong Yung 翁文康 ¹ ³
¹ Huawei 2012 Lab
华为2012实验室
² Lomonosov Moscow State University
³ Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
中国 深圳 南方科技大学量子科学与工程研究院及物理系
arXiv, 12 August 2021
Abstract

The computational advantage of noisy quantum computers have been demonstrated by sampling the bitstrings of quantum random circuits. An important issue is how the performance of quantum devices could be quantified in the so-called “supremacy regime”. The standard approach is through the linear cross entropy (XEB), where the theoretical value of the probability is required for each bitstring.

However, the computational cost of XEB grows exponentially. So far, random circuits of the 53-qubit Sycamore chip was verified up to 10 cycles of gates only; the XEB fidelities of deeper circuits were approximated with simplified circuits instead. Here we present a multitensor contraction algorithm for speeding up the calculations of XEB of quantum circuits, where the computational cost can be significantly reduced through a recursive manner with some form of memoization.

As a demonstration, we analyzed the experimental data of the 53-qubit Sycamore
chip and obtained the exact values of the corresponding XEB fidelities up to 16 cycles using only moderate computing resources (few GPUs). If the algorithm was implemented on the Summit supercomputer, we estimate that for the 20-cycles supremacy circuits, it would only cost 7.5 days, which is several orders of magnitudes lower than previously estimated in the literature.
arXiv_1
arXiv_2
arXiv_3
arXiv_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
A novel approach towards robust construction of physical colors on lithium niobate crystal
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
High-frequency enhanced ultrafast compressed active photography
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
High-efficiency RGB achromatic liquid crystal diffractive optical elements
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
Ferroelectric domain engineering of lithium niobate
Smart reconfigurable metadevices made of shape memory alloy metamaterials
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper