MMM
YYYY
Deep-learning-based ciphertext-only attack on optical double random phase encryption
基于深度学习的光双随机相位加密的纯密文攻击
ディープラーニングベースの暗号文のみの光二重ランダム位相暗号化への攻撃
광학 이중 랜덤 위상 암호화에 대한 딥 러닝 기반 암호문 전용 공격
Ataque solo de texto cifrado basado en aprendizaje profundo en el cifrado óptico de doble fase aleatoria
Attaque de texte chiffré uniquement basée sur l'apprentissage en profondeur contre le chiffrement optique à double phase aléatoire
Атака только зашифрованным текстом на основе глубокого обучения на оптическое шифрование с двойной случайной фазой
Meihua Liao 廖美华 ¹, Shanshan Zheng 郑珊珊 ² ³, Shuixin Pan ¹, Dajiang Lu 卢大江 ¹, Wenqi He 何文奇 ¹, Guohai Situ 司徒国海 ² ³ ⁴, Xiang Peng 彭翔 ¹
¹ Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
中国 深圳 深圳大学物理与光电工程学院 光电子器件与系统教育部/广东省重点实验室
² Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
中国 上海 中国科学院上海光学精密机械研究所
³ Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学材料科学与光电技术学院
⁴ Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
中国 杭州 中国科学院大学杭州高等研究院
Opto-Electronic Advances, 20 May 2021
Abstract

Optical cryptanalysis is essential to the further investigation of more secure optical cryptosystems. Learning-based attack of optical encryption eliminates the need for the retrieval of random phase keys of optical encryption systems but it is limited for practical applications since it requires a large set of plaintext-ciphertext pairs for the cryptosystem to be attacked.

Here, we propose a two-step deep learning strategy for ciphertext-only attack (COA) on the classical double random phase encryption (DRPE). Specifically, we construct a virtual DRPE system to gather the training data. Besides, we divide the inverse problem in COA into two more specific inverse problems and employ two deep neural networks (DNNs) to respectively learn the removal of speckle noise in the autocorrelation domain and the de-correlation operation to retrieve the plaintext image.

With these two trained DNNs at hand, we show that the plaintext can be predicted in real-time from an unknown ciphertext alone. The proposed learning-based COA method dispenses with not only the retrieval of random phase keys but also the invasive data acquisition of plaintext-ciphertext pairs in the DPRE system. Numerical simulations and optical experiments demonstrate the feasibility and effectiveness of the proposed learning-based COA method.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Physics and applications of terahertz metagratings
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Smart photonic wristband for pulse wave monitoring
Multifunctional mixed analog/digital signal processor based on integrated photonics
Three-dimensional multichannel waveguide grating filters
Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper