MMM
YYYY
Beyond Lambertian light trapping for large-area silicon solar cells: fabrication methods
超越朗伯光捕获的大面积硅太阳能电池:制造方法
大面積シリコン太陽電池のランバート光トラッピングを超えて:製造方法
대면적 실리콘 태양전지를 위한 Lambertian 광 포획을 넘어서: 제조 방법
Más allá de la captura de luz lambertiana para células solares de silicio de gran superficie: métodos de fabricación
Au-delà du piégeage de la lumière lambertienne pour les cellules solaires au silicium de grande surface : méthodes de fabrication
Помимо ламбертовского улавливания света для кремниевых солнечных элементов большой площади: методы изготовления
Jovan Maksimovic ¹, Jingwen Hu ¹, Soon Hock Ng ¹, Tomas Katkus ¹, Gediminas Seniutinas ¹, Tatiana Pinedo Rivera ², Michael Stuiber ², Yoshiaki Nishijima ³ ⁴, Sajeev John ⁵, Saulius Juodkazis ¹ ⁶
¹ Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn Vic 3122, Australia
² Melbourne Centre for Nanofabrication, ANFF Victoria, 151 Wellington Rd., Clayton Vic 3168 Australia
³ Department of Electrical and Computer Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
⁴ Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
⁵ Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON, M5S 1A7, Canada
⁶ World Research Hub Initiative (WRHI), School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
Opto-Electronic Advances, 27 May 2022
Abstract

Light trapping photonic crystal (PhC) patterns on the surface of Si solar cells provides a novel opportunity to approach the theoretical efficiency limit of 32.3%, for light-to-electrical power conversion with a single junction cell. This is beyond the efficiency limit implied by the Lambertian limit of ray trapping ~ 29%. The interference and slow light effects are harnessed for collecting light even at the long wavelengths near the Si band-gap.

We compare two different methods for surface patterning, that can be extended to large area surface patterning: 1) laser direct write and 2) step-&-repeat 5× reduction projection lithography. Large area throughput limitations of these methods are compared with the established electron beam lithography (EBL) route, which is conventionally utilised but much slower than the presented methods.

Spectral characterisation of the PhC light trapping is compared for samples fabricated by different methods. Reflectance of Si etched via laser patterned mask was ~ 7% at visible wavelengths and was comparable with Si patterned via EBL made mask. The later pattern showed a stronger absorbance than the Lambertian limit. (M.-L. Hsieh et al., Sci. Rep. 10, 11857 (2020)).
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Physics and applications of terahertz metagratings
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Smart photonic wristband for pulse wave monitoring
Multifunctional mixed analog/digital signal processor based on integrated photonics
Three-dimensional multichannel waveguide grating filters
Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Highly sensitive and real-simultaneous CH4/C2H2 dual-gas LITES sensor based on Lissajous pattern multi-pass cell
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper