All-optical controlled-NOT logic gate achieving directional asymmetric transmission based on metasurface doublet
基于超表面倍频实现定向非对称传输的全光控制NOT逻辑门
超表面周波数逓倍に基づく指向性非対称伝送を実現する全光制御NOT論理ゲート
초표면 배율 주파수를 기반으로 정방향 비대칭 전송을 실현하는 전광 제어 NOT 논리문
Puerta lógica no controlada por luz completa para transmisión asimétrica direccional basada en la duplicación de frecuencia supersuperficial
Portes logiques not entièrement contrôlées par la lumière pour une transmission asymétrique directionnelle basée sur le doublage hypersurfacique
Логические ворота NOT с полным световым управлением, основанные на гиперповерхностном умножении частоты для достижения направленной асимметричной передачи
Yijia Huang 黄奕嘉 ¹, Tianxiao Xiao ², Shuai Chen 陈帅 ⁴, Zhengwei Xie 谢征微 ¹, Jie Zheng 郑杰 ¹, Jianqi Zhu 祝建琦 ¹, Yarong Su 苏亚荣 ¹, Weidong Chen 陈卫东 ¹, Ke Liu 刘科 ¹, Mingjun Tang 唐明君 ¹, Peter Müller-Buschbaum ² ³, Ling Li 李玲 ¹
¹ Laboratory of Micro-Nano Optics, College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China
中国 成都 四川师范大学 物理与电子工程学院 微纳光学实验室
² Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Straße 1, 85748, Garching, Germany
³ Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße. 1, 85748, Garching, Germany
⁴ Tianjin Huahuixin Technology Group Co., Ltd, Zhongtian Avenue, Tianjin 300467, China
天津华慧芯科技集团有限公司
Optical logic gates play important roles in all-optical logic circuits, which lie at the heart of the next-generation optical computing technology. However, the intrinsic contradiction between compactness and robustness hinders the development in this field.
Here, we propose a simple design principle that can possess multiple-input-output states according to the incident circular polarization and direction based on the metasurface doublet, which enables controlled-NOT logic gates in infrared region. Therefore, the directional asymmetric electromagnetic transmission can be achieved. As a proof of concept, a spin-dependent Janus metasurface is designed and experimentally verified that four distinct images corresponding to four input states can be captured in the far-field.
In addition, since the design method is derived from geometric optics, it can be easily applied to other spectra. We believe that the proposed metasurface doublet may empower many potential applications in chiral imaging, chiroptical spectroscopy and optical computing.