MMM
YYYY
All-fiber ellipsometer for nanoscale dielectric coatings
用于纳米介电涂层的全光纤椭圆仪
ナノ誘電体被覆用の全光ファイバエリプソメータ
나노 개전 코팅에 사용되는 전광섬유 타원기
Elipsometro de fibra óptica completa para recubrimiento dieléctrico nanométrico
Ellipsomètre tout fibre pour revêtements nanodiélectriques
Полноволоконный эллипсометр для нано - диэлектрического покрытия
Jose Javier Imas ¹ ², Ignacio R. Matías ¹ ², Ignacio Del Villar ¹ ², Aritz Ozcáriz ¹ ², Carlos Ruiz Zamarreño ¹ ², Jacques Albert ³
¹ Department of Electrical, Electronic and Communications Engineering, Public University of Navarre, Pamplona 31006, Spain
² Institute of Smart Cities, Public University of Navarre, Pamplona 31006, Spain
³ Department of Electronics, Carleton University, Ottawa (Ontario) K1S 5B6, Canada
Opto-Electronic Advances, 31 October 2023
Abstract

Multiple mode resonance shifts in tilted fiber Bragg gratings (TFBGs) are used to simultaneously measure the thickness and the refractive index of TiO₂ thin films formed by Atomic Layer Deposition (ALD) on optical fibers. This is achieved by comparing the experimental wavelength shifts of 8 TFBG resonances during the deposition process with simulated shifts from a range of thicknesses (T) and values of the real part of the refractive index (n).

The minimization of an error function computed for each (n,T) pair then provides a solution for the thickness and refractive index of the deposited film and, a posteriori, to verify the deposition rate throughout the process from the time evolution of the wavelength shift data. Validations of the results were carried out with a conventional ellipsometer on flat witness samples deposited simultaneously with the fiber and with scanning electron measurements on cut pieces of the fiber itself. The final values obtained by the TFBG (n= 2.25, final thickness of 185 nm) were both within 4% of the validation measurements.

This approach provides a method to measure the formation of nanoscale dielectric coatings on fibers in situ for applications that require precise thicknesses and refractive indices, such as the optical fiber sensor field. Furthermore, the TFBG can also be used as a process monitor for deposition on other substrates for deposition methods that produce uniform coatings on dissimilar shaped substrates, such as ALD.
Opto-Electronic Advances_1
Opto-Electronic Advances_2
Opto-Electronic Advances_3
Opto-Electronic Advances_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Physics and applications of terahertz metagratings
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Smart photonic wristband for pulse wave monitoring
Multifunctional mixed analog/digital signal processor based on integrated photonics
Three-dimensional multichannel waveguide grating filters
Ka-Band metalens antenna empowered by physics-assisted particle swarm optimization (PA-PSO) algorithm
Optical micro/nanofiber enabled tactile sensors and soft actuators: A review
Photonics-assisted THz wireless communication enabled by wide-bandwidth packaged back-illuminated modified uni-traveling-carrier photodiode
Highly sensitive and real-simultaneous CH₄/C₂H₂ dual-gas LITES sensor based on Lissajous pattern multi-pass cell
Control of light–matter interactions in two-dimensional materials with nanoparticle-on-mirror structures
High performance micromachining of sapphire by laser induced plasma assisted ablation (LIPAA) using GHz burst mode femtosecond pulses



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper