MMM
YYYY
Photo-driven fin field-effect transistors
光驱动鳍式场效应晶体管
オプティカルドライブフィン形電界効果トランジスタ
옵티컬 드라이브 지느러미 필드 효과 트랜지스터
Transistor de efecto de campo de aleta impulsado por la luz
Transistor à effet de champ à ailettes pilotées par la lumière
полевой транзистор с оптическим приводом
Jintao Fu 付津滔 ¹ ², Chongqian Leng 冷重钱 ¹, Rui Ma 马睿 ¹ ³, Changbin Nie 聂长斌 ¹ ², Feiying Sun 孙飞莹 ¹, Genglin Li 李庚霖 ¹ ², Xingzhan Wei 魏兴战 ¹ ² ³
¹ Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
中国 重庆 中国科学院 重庆绿色智能技术研究院
² University of Chinese Academy of Sciences, Beijing 100049, China
中国 北京 中国科学院大学
³ Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
中国 重庆 中国科学院大学重庆学院
Opto-Electronic Science, 28 May 2024
Abstract

The integration between infrared detection and modern microelectronics offers unique opportunities for compact and high-resolution infrared imaging. However, silicon, the cornerstone of modern microelectronics, can only detect light within a limited wavelength range (< 1100 nm) due to its bandgap of 1.12 eV, which restricts its utility in the infrared detection realm. Herein, a photo-driven fin field-effect transistor is presented, which breaks the spectral response constraint of conventional silicon detectors while achieving sensitive infrared detection.

This device comprises a fin-shaped silicon channel for charge transport and a lead sulfide film for infrared light harvesting. The lead sulfide film wraps the silicon channel to form a “three-dimensional” infrared-sensitive gate, enabling the photovoltage generated at the lead sulfide-silicon junction to effectively modulate the channel conductance. At room temperature, this device realizes a broadband photodetection from visible (635 nm) to short-wave infrared regions (2700 nm), surpassing the working range of the regular indium gallium arsenide and germanium detectors.

Furthermore, it exhibits low equivalent noise powers of 3.2×10⁻¹² W·Hz⁻¹/² and 2.3×10⁻¹¹ W·Hz⁻¹/² under 1550 nm and 2700 nm illumination, respectively. These results highlight the significant potential of photo-driven fin field-effect transistors in advancing uncooled silicon-based infrared detection.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Opto-Electronic Science_4
Reviews and Discussions
https://www.hotpaper.io/index.html
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Advanced biological imaging techniques based on metasurfaces
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
Streamlined photonic reservoir computer with augmented memory capabilities
High-precision multi-focus laser sculpting of microstructured glass
Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
Data-driven polarimetric approaches fuel computational imaging expansion
An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper