Chiral detection of biomolecules based on reinforcement learning
基于强化学习的生物分子手性检测
強化学習に基づく生体分子のキラル検出
강화 학습 기반 생물 분자 수성 검사
Detección quiral biomolecular basada en el aprendizaje de refuerzo
Détection chirale biomoléculaire basée sur l'apprentissage par renforcement
Биомолекулярное ручное тестирование на основе интенсивного обучения
Yuxiang Chen 陈宇翔 ¹, Fengyu Zhang 张凤宇 ² ⁴, Zhibo Dang 党郅博 ¹, Xiao He 何霄 ¹, Chunxiong Luo 罗春雄 ² ⁴, Zhengchang Liu 刘正昌 ³, Pu Peng 彭璞 ¹, Yuchen Dai 戴宇琛 ³, Yijing Huang 黄逸婧 ¹, Yu Li 李瑜 ³, Zheyu Fang 方哲宇 ¹ ³
¹ School of Physics, Peking University, Beijing 100871, China
中国 北京 北京大学物理学院
² The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics & Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
中国 北京 北京大学 前沿交叉学科研究院 定量生物学中心 物理学院 人工微结构和介观物理国家重点实验室
³ Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
中国 北京 北京大学 前沿交叉学科研究院
⁴ Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
中国 温州 中国科学院大学温州研究院
Chirality plays an important role in biological processes, and enantiomers often possess similar physical properties and different physiologic functions. In recent years, chiral detection of enantiomers become a popular topic.
Plasmonic metasurfaces enhance weak inherent chiral effects of biomolecules, so they are used in chiral detection. Artificial intelligence algorithm makes a lot of contribution to many aspects of nanophotonics. Here, we propose a nanostructure design method based on reinforcement learning and devise chiral nanostructures to distinguish enantiomers.
The algorithm finds out the metallic nanostructures with a sharp peak in circular dichroism spectra and emphasizes the frequency shifts caused by nearfield interaction of nanostructures and biomolecules. Our work inspires universal and efficient machine-learning methods for nanophotonic design.