在碳化二钼纳米网格上垂直安装二硫化钼纳米片可实现高效的氢析出
二硫化モリブデンナノシートを炭化二モリブデンナノメッシュに垂直に取り付けると、効率的な水素発生が可能になります
디몰리브덴 카바이드 나노메쉬에 수직으로 장착된 이황화 몰리브덴 나노시트는 효율적인 수소 발생을 가능하게 합니다
El montaje vertical de nanoláminas de disulfuro de molibdeno en nanomallas de carburo de dimolibdeno permite una evolución eficiente del hidrógeno
Le montage vertical de nanofeuilles de bisulfure de molybdène sur des nanomailles de carbure de dimolybdène permet une évolution efficace de l'hydrogène
Вертикальное расположение нанолистов дисульфида молибдена на наносетках карбида димолибдена обеспечивает эффективное выделение водорода
Tingting Wang 王婷婷 ¹, Pengyan Wang 王鹏颜 ¹, Yajun Pang 庞亚俊 ², Yitian Wu 吴倚天 ², Jin Yang 杨金 ², Hao Chen 陈浩 ², Xiaorui Gao 高晓蕊 ³, Shichun Mu 木士春 ¹, and Zongkui Kou 寇宗魁 ¹
¹ State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
中国 武汉 武汉理工大学 材料复合新技术国家重点实验室
² College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
中国 杭州 浙江农林大学化学与材料工程学院
³ Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
中国 常熟 常熟理工学院电子与信息工程学院 江苏省新型功能材料重点建设实验室
Designing hierarchical heterostructure to optimize the adsorption of hydrogen intermediate (H*) is impressive for hydrogen evolution reaction (HER) catalysis. Herein, we show that vertically mounting two-dimensional (2D) layered molybdenum disulfide (MoS₂) nanosheets on 2D nonlayered dimolybdenum carbide (Mo₂C) nanomeshes to form a hierarchical heterostructure largely accelerates the HER kinetics in acidic electrolyte due to the weakening adsorption strength of H* on 2D Mo₂C nanomeshes.
Our hierarchical MoS₂/Mo₂C heterostructure therefore gives a decrease of overpotential for up to 500 mV at −10 mA·cm⁻² and an almost 200-fold higher kinetics current density compared with the pristine Mo₂C nanomeshes and maintains robust stability with a small drop of overpotential for only 16 mV upon 5,000 cycles. We further rationalize this finding by theoretical calculations and find an optimized adsorption free energy of H*, identifying that the MoS₂ featuring strong H* desorption plays a key role in weakening the strong binding of Mo₂C with H* and therefore improves the intrinsic HER activity on active C sites of Mo₂C.
This present finding shines the light on the rational design of heterostructured catalysts with synergistic geometry.