MMM
YYYY
Towards integrated mode-division demultiplexing spectrometer by deep learning
基于深度学习的集成模分多路分解光谱仪
深さ学習に基づく集積モード分割多重分解分光計
딥러닝 기반 통합 모분 다중 분해 분광기
Espectrómetro integrado de descomposición de múltiples canales basado en el aprendizaje profundo
Spectromètre intégré de décomposition multiple par division de mode basé sur l'apprentissage en profondeur
многоканальный спектрометр с расщеплением мод на основе глубокого изучения
Ze-huan Zheng 郑泽寰 ¹ ², Sheng-ke Zhu 朱圣科 ¹ ⁴, Ying Chen 陈颖 ³, Huanyang Chen 陈焕阳 ⁵, Jin-hui Chen 陈锦辉 ¹ ⁴ ⁶
¹ Shenzhen Research Institute, Xiamen University, Shenzhen 518000, China
中国 深圳 厦门大学深圳研究院
² Xiamen Power Supply Bureau of Fujian Electric Power Company Limited, State Grid, Xiamen 361004, China
中国 厦门 福建省电力有限公司 厦门供电局
³ College of Information Science and Engineering, Fujian Provincial Key Laboratory of Light Propagation and Transformation, Huaqiao University, Xiamen 361021, China
福建省光传输与变换重点实验室 华侨大学信息科学与工程学院
⁴ Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学电磁声学研究院
⁵ College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
中国 厦门 厦门大学物理科学与技术学院
⁶ Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
中国 厦门 中国福建能源材料科学与技术创新实验室(嘉庚创新实验室)
Opto-Electronic Science, 1 November 2022
Abstract

Miniaturized spectrometers have been widely researched in recent years, but few studies are conducted with on-chip multimode schemes for mode-division multiplexing (MDM) systems. Here we propose an ultracompact mode-division demultiplexing spectrometer that includes branched waveguide structures and graphene-based photodetectors, which realizes simultaneously spectral dispersing and light fields detecting.

In the bandwidth of 1500–1600 nm, the designed spectrometer achieves the single-mode spectral resolution of 7 nm for each mode of TE1–TE4 by Tikhonov regularization optimization. Empowered by deep learning algorithms, the 15-nm resolution of parallel reconstruction for TE1–TE4 is achieved by a single-shot measurement. Moreover, by stacking the multimode response in TE1–TE4 to the single spectra, the 3-nm spectral resolution is realized.

This design reveals an effective solution for on-chip MDM spectroscopy, and may find applications in multimode sensing, interconnecting and processing.
Opto-Electronic Science_1
Opto-Electronic Science_2
Opto-Electronic Science_3
Reviews and Discussions
https://www.hotpaper.io/index.html
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
Advanced biological imaging techniques based on metasurfaces
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
High-precision multi-focus laser sculpting of microstructured glass
Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
Data-driven polarimetric approaches fuel computational imaging expansion
An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper