Spatio-Temporal Convolutional Network Based Power Forecasting of Multiple Wind Farms
基于时空卷积网络的多风电场功率预测
複数の風力発電所の時空間畳み込みネットワークベースの電力予測
다중 풍력 발전 단지의 시공간 컨볼루션 네트워크 기반 전력 예측
Pronóstico de energía basado en redes convolucionales espacio-temporales de múltiples parques eólicos
Prévision de puissance spatio-temporelle convolutive basée sur le réseau de plusieurs parcs éoliens
Пространственно-временное прогнозирование мощности нескольких ветряных ферм на основе сверточной сети
Xiaochong Dong 董骁翀 ¹, Yingyun Sun 孙英云 ¹, Ye Li 李烨 ², Xinying Wang 王新迎 ², Tianjiao Pu 蒲天骄 ²
¹ School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
中国 北京 华北电力大学电气与电子工程学院
² China Electric Power Research Institute, Beijing 100192, China
中国 北京 中国电力科学研究院
Journal of Modern Power Systems and Clean Energy, 8 December 2021
Abstract
The rapidly increasing wind power penetration presents new challenges to the operation of power systems. Improving the accuracy of wind power forecasting is a possible solution under this circumstance. In the power forecasting of multiple wind farms, determining the spatio-temporal correlation of multiple wind farms is critical in improving the forecasting accuracy.
This paper proposes a spatio-temporal convolutional network (STCN) that utilizes a directed graph convolutional structure. A temporal convolutional network is also adopted to characterize the temporal features of wind power. Historical data from 15 wind farms in Australia are used in the case study.
The forecasting results show that the proposed model has higher accuracy than existing methods. Based on the structure of the STCN, asymmetric spatial correlation at different temporal scales can be observed, which shows the effectiveness of the proposed model.