MMM
YYYY
Runx1 protects against the pathological progression of osteoarthritis
Runx1 可防止骨关节炎的病理进展
Runx1は変形性関節症の病理学的進行を防ぎます
Runx1은 골관절염의 병리학적 진행으로부터 보호합니다
Runx1 protege contra la progresión patológica de la osteoartritis
Runx1 protège contre la progression pathologique de l'arthrose
Runx1 защищает от патологического прогрессирования остеоартрита
Chenchen Zhou ¹ ² ³, Yujia Cui 崔钰嘉 ¹, Yueyi Yang 杨月翼 ¹, Daimo Guo 郭黛墨 ¹, Demao Zhang 张德茂 ¹, Yi Fan ¹, Xiaobing Li 李小兵 ² ³, Jing Zou ​邹静 ² ³, Jing Xie 谢静 ¹
¹ State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
中国 成都 四川大学华西口腔医院 口腔疾病研究国家重点实验室
² National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
中国 成都 四川大学 国家口腔疾病临床医学研究中心
³ Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
中国 成都 四川大学华西口腔医院 儿童口腔科
Bone Research, 7 December 2021
Abstract

Runt-related transcription factor-1 (Runx1) is required for chondrocyte-to-osteoblast lineage commitment by enhancing both chondrogenesis and osteogenesis during vertebrate development. However, the potential role of Runx1 in joint diseases is not well known.

In the current study, we aimed to explore the role of Runx1 in osteoarthritis induced by anterior cruciate ligament transaction (ACLT) surgery. We showed that chondrocyte-specific Runx1 knockout (Runx1f/fCol2a1-Cre) aggravated cartilage destruction by accelerating the loss of proteoglycan and collagen II in early osteoarthritis. Moreover, we observed thinning and ossification of the growth plate, a decrease in chondrocyte proliferative capacity and the loss of bone matrix around the growth plate in late osteoarthritis. We overexpressed Runx1 by adeno-associated virus (AAV) in articular cartilage and identified its protective effect by slowing the destruction of osteoarthritis in cartilage in early osteoarthritis and alleviating the pathological progression of growth plate cartilage in late osteoarthritis.

ChIP-seq analysis identified new targets that interacted with Runx1 in cartilage pathology, and we confirmed the direct interactions of these factors with Runx1 by ChIP-qPCR. This study helps us to understand the function of Runx1 in osteoarthritis and provides new clues for targeted osteoarthritis therapy.
Bone Research_1
Bone Research_2
Bone Research_3
Bone Research_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Photoacoustic spectroscopy and light-induced thermoelastic spectroscopy based on inverted-triangular lithium niobate tuning fork
Thin-film lithium niobate-based detector: recent advances and perspectives
In-situ and ex-situ twisted bilayer liquid crystal computing platform for reconfigurable image processing
Highly textured single-crystal-like perovskite films for large-area, high-performance photodiodes
Robust performance of PTQ10:DTY6 in halogen-free photovoltaics across deposition techniques and configurations for industrial scale-up
Surpassing the diffraction limit in long-range laser engineering via cross-scale vectorial optical field manipulation: perspectives and outlooks
Spatiotemporal multiplexed photonic reservoir computing: parallel prediction for the high-dimensional dynamics of complex semiconductor laser network
Filament based ionizing radiation sensing
Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
Partially coherent optical chip enables physical-layer public-key encryption
Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper