MMM
YYYY
Probe Machine Based Computing Model for Maximum Clique Problem
最大团问题的基于探测机的计算模型
最大クリーク問題のためのプローブマシンベースのコンピューティングモデル
최대 Clique 문제에 대한 프로브 머신 기반 컴퓨팅 모델
Analice el modelo informático basado en máquinas para un problema de camarilla máximo
Modèle de calcul basé sur une machine de sonde pour le problème de clique maximum
Модель вычислений на основе пробной машины для задачи о максимальной клике
CUI Jianzhong 崔建中 ¹ ⁴, YIN Zhixiang 殷志祥 ², TANG Zhen 唐震 ³, YANG Jing 杨静 ³
¹ Department of Computer, Huainan Union University, Huainan 232038, China
中国 淮南 淮南联合大学计算机系
² School of Mathematics, Physics and Statistics, Shanghai University Of Engineering Science, Shanghai 201620, China
中国 上海 上海工程技术大学 数理与统计学院
³ School of Mathematics and Big Data, AnHui University of Science & Technology, Huainan 232001, China
中国 淮南 安徽理工大学 数学与大数据学院
⁴ School of Electronic and Information Engineering, AnHui University Of Science & Technology, Huainan 232001, China
中国 淮南 安徽理工大学 电气与信息工程学院
Chinese Journal of Electronics, 30 November 2021
Abstract

Probe Machine (PM) is a recently reported mathematic model with massive parallelism. Herein, we presented searching the maximum clique of an undirected graph with six vertices. We constructed data library containing n sublibraries, each sublibrary corresponded to a vertex in the given graph. Then, probe library according to the induced subgraph was designed in order to search and generate all maximal cliques. Subsequently, we performed probe operation, and all maximal cliques were generated in parallel.

The advantages of the proposed model lie in two aspects. On one hand, solution to NP-complete problem is generated in just one step of probe operation rather than found in vast solution space. On the other hand, the proposed model is highly parallel. The work demonstrates that PM is superior to TM in terms of searching capacity when tackling NP-complete problem.
Chinese Journal of Electronics_1
Chinese Journal of Electronics_2
Chinese Journal of Electronics_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
A novel approach towards robust construction of physical colors on lithium niobate crystal
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
High-frequency enhanced ultrafast compressed active photography
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
High-efficiency RGB achromatic liquid crystal diffractive optical elements
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
Ferroelectric domain engineering of lithium niobate
Smart reconfigurable metadevices made of shape memory alloy metamaterials
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper