MMM
YYYY
On the Generalized Uncertainty Principle
关于广义不确定性原理
一般化された不確定性原理について
일반화된 불확정성 원리에 대하여
Sobre el principio de incertidumbre generalizada
Sur le principe d'incertitude généralisée
Об общем принципе неопределенности
Ming-Cheng Chen 陈明城 ¹ ², Chao-Yang Lu 陆朝阳 ¹ ², Jian-Wei Pan 潘建伟 ¹ ²
¹ Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China; 中国科学技术大学 近代物理系 合肥微尺度物质科学国家研究中心
² CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China; 中国科学技术大学 中国科学院 量子信息与量子科技前沿协同创新中心
ChinaXiv, 13 August 2021
Abstracts

Generalized Uncertainty Principle (GUP), which manifests a minimal Planck length in quantum spacetime, is central in various quantum gravity theories and has been widely used to describe the Planck-scale phenomenon. Here, we propose a thought experiment based on GUP – as a quantum version of Galileo's falling bodies experiment – to show that the experimental results cannot be consistently described in quantum mechanics.

This paradox arises from the interaction of two quantum systems in an interferometer, a photon and a mirror, with different effective Planck constants. Our thought experiment rules out the widely used GUP, and establishes a Quantum Coupling Principle that two physical systems of different effective Planck constants cannot be consistently coupled in quantum mechanics. Our results point new directions to quantum gravity.
ChinaXiv_1
ChinaXiv_2
ChinaXiv_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
A novel approach towards robust construction of physical colors on lithium niobate crystal
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
High-frequency enhanced ultrafast compressed active photography
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
High-efficiency RGB achromatic liquid crystal diffractive optical elements
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
Ferroelectric domain engineering of lithium niobate
Smart reconfigurable metadevices made of shape memory alloy metamaterials
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper