MMM
YYYY
Neural Architecture Dilation for Adversarial Robustness
用于对抗鲁棒性的神经结构扩展
敵対的ロバスト性のためのニューラルアーキテクチャ拡張
노 봉 성에 대항 하 는 신경 구조 확장 에 사용 된다
Propagación de la estructura Neural para contrarrestar la robustez
Extension de la structure neuronale pour lutter contre la robustesse
распространение нервной структуры для противодействия
Yanxi Li ¹, Zhaohui Yang ² ³, Yunhe Wang 王云鹤 ², Chang Xu ¹
¹ School of Computer Science, University of Sydney, Australia
² Noah’s Ark Lab, Huawei Technologies, China
中国 香港 华为诺亚方舟实验室
³ Key Lab of Machine Perception (MOE), Department of Machine Intelligence, Peking University, China
中国 北京 北京大学机器感知与智能教育部重点实验室
arXiv, 16 August 2021
Abstract

With the tremendous advances in the architecture and scale of convolutional neural networks (CNNs) over the past few decades, they can easily reach or even exceed the performance of humans in certain tasks. However, a recently discovered shortcoming of CNNs is that they are vulnerable to adversarial attacks. Although the adversarial robustness of CNNs can be improved by adversarial training, there is a trade-off between standard accuracy and adversarial robustness.

From the neural architecture perspective, this paper aims to improve the adversarial robustness of the backbone CNNs that have a satisfactory accuracy. Under a minimal computational overhead, the introduction of a dilation architecture is expected to be friendly with the standard performance of the backbone CNN while pursuing adversarial robustness. Theoretical analyses on the standard and adversarial error bounds naturally motivate the proposed neural architecture dilation algorithm. Experimental results on real-world datasets and benchmark neural networks demonstrate the effectiveness of the proposed algorithm to balance the accuracy and adversarial robustness.
arXiv_1
arXiv_2
arXiv_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
Data-driven polarimetric approaches fuel computational imaging expansion
An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
Genetic algorithm assisted meta-atom design for high-performance metasurface optics
Finely regulated luminescent Ag-In-Ga-S quantum dots with green-red dual emission toward white light-emitting diodes
Cascaded metasurfaces enabling adaptive aberration corrections for focus scanning
Physics and applications of terahertz metagratings
Surface-patterned chalcogenide glasses with high-aspect-ratio microstructures for long-wave infrared metalenses
Racemic dielectric metasurfaces for arbitrary terahertz polarization rotation and wavefront manipulation
Miniature meta-device for dynamic control of Airy beam
Multi-prior physics-enhanced neural network enables pixel super-resolution and twin-image-free phase retrieval from single-shot hologram
Smart photonic wristband for pulse wave monitoring



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper