MMM
YYYY
Hydrodynamic Coefficient Investigation on a Partial Permeable Stepped Breakwater Under Regular Waves
规则波作用下部分透水阶梯式防波堤的水动力系数研究
規則的な波の下での部分的に透過性の階段状防波堤に関する流体力学的係数の調査
규칙파하 부분투수계단식 방파제에 대한 유체역학계수 조사
Investigación del coeficiente hidrodinámico en un rompeolas escalonado parcialmente permeable bajo olas regulares
Etude du coefficient hydrodynamique sur un brise-lames à gradins partiellement perméable sous des vagues régulières
Исследование гидродинамических коэффициентов на частично проницаемом ступенчатом волнорезе при регулярных волнах
Zegao Yin 尹则高 ¹ ², Zihan Zheng 郑子涵 ¹, Ning Yu 于宁 ¹, Haojian Wang ¹
¹ Engineering College, Ocean University of China, Qingdao, 266100, China
中国 青岛 中国海洋大学工程学院
² Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao, 266100, China
中国 青岛 中国海洋大学山东省海洋工程重点实验室
Journal of Ocean University of China, 21 November 2021
Abstract

Traditional breakwater takes the advantage of high protection performance and has been widely used. However, it contributes to high wave reflection in the seaside direction and poor water exchange capacity between open seawater and an inside harbor. Consequently, a partially permeable stepped breakwater (PPSB) is proposed to ensure safety and good water exchange capacity for an inside harbor, and a 3-D computational fluid dynamics (CFD) mathematical model was used to investigate the hydrodynamic coefficients using Reynolds-Averaged Navier-Stokes equations, Re-Normalization Group (RNG) k-ε equations, and the VOF technique.

A series of experiments are conducted to measure the wave heights for validating the mathematical model, and a series of dimensionless parameters considering wave and PPSB effects were presented to assess their relationships with hydrodynamic coefficients, respectively. With the increase in the reciprocal value of PPSB slope, incident wave steepness and permeable ratio below still water level (SWL), the wave reflection coefficient decreases. The wave transmission coefficient decreases with an increase in the reciprocal value of the PPSB slope and incident wave steepness; however, it increases with the increase in the permeable ratio below SWL.

With increases in the reciprocal value of the PPSB slope, permeable ratio below SWL and incident wave steepness for relatively high wave period scenarios, the wave energy dissipation coefficient increases; however, it decreases slightly with increases in the incident wave steepness for the smallest wave period scenarios. Furthermore, simple prediction formulas are conducted for predicting the hydrodynamic coefficients and they are well validated with the related data.
Journal of Ocean University of China_1
Journal of Ocean University of China_2
Journal of Ocean University of China_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
Ultra-high-Q photonic crystal nanobeam cavity for etchless lithium niobate on insulator (LNOI) platform
Advanced biological imaging techniques based on metasurfaces
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
Streamlined photonic reservoir computer with augmented memory capabilities
High-precision multi-focus laser sculpting of microstructured glass
Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
Data-driven polarimetric approaches fuel computational imaging expansion



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper