MMM
YYYY
Grassland: A Rapid Algebraic Modeling System for Million-variable Optimization
Grassland:用于百万变量优化的快速代数建模系统
Grassland:百万変数最適化のための高速代数モデリングシステム
Grassland: 백만 변수 최적화를 위한 신속한 대수 모델링 시스템
Grassland: un sistema de modelado algebraico rápido para optimización de millones de variables
Grassland : un système de modélisation algébrique rapide pour une optimisation à millions de variables
Grassland: система быстрого алгебраического моделирования для оптимизации с миллионами переменных
Xihan Li ¹, Xiongwei Han 韩雄威 ², Zhishuo Zhou ³, Mingxuan Yuan ², Jia Zeng ², Jun Wang ¹
¹ University College London, The United Kingdom
² Huawei Noah's Ark Lab 华为 诺亚方舟实验室
³ Fudan University 复旦大学
arXiv, 10 August 2021
Abstract

An algebraic modeling system (AMS) is a type of mathematical software for optimization problems, which allows users to define symbolic mathematical models in a specific language, instantiate them with given source of data, and solve them with the aid of external solver engines. With the bursting scale of business models and increasing need for timeliness, traditional AMSs are not sufficient to meet the following industry needs: 1) million-variable models need to be instantiated from raw data very efficiently; 2) Strictly feasible solution of million-variable models need to be delivered in a rapid manner to make up-to-date decisions against highly dynamic environments.

Grassland is a rapid AMS that provides an end-to-end solution to tackle these emerged new challenges. It integrates a parallelized instantiation scheme for large-scale linear constraints, and a sequential decomposition method that accelerates model solving exponentially with an acceptable loss of optimality. Extensive benchmarks on both classical models and real enterprise scenario demonstrate 6 ~ 10x speedup of Grassland over state-of-the-art solutions on model instantiation.

Our proposed system has been deployed in the large-scale real production planning scenario of Huawei. With the aid of our decomposition method, Grassland successfully accelerated Huawei's million-variable production planning simulation pipeline from hours to 3 ~ 5 minutes, supporting near-real-time production plan decision making against highly dynamic supply-demand environment.
arXiv_1
arXiv_2
arXiv_3
arXiv_4
Reviews and Discussions
https://www.hotpaper.io/index.html
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
Advanced biological imaging techniques based on metasurfaces
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
High-precision multi-focus laser sculpting of microstructured glass
Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
Data-driven polarimetric approaches fuel computational imaging expansion
An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper