MMM
YYYY
GP-S3Net: Graph-based Panoptic Sparse Semantic Segmentation Network
GP-S3Net:基于图的全景稀疏语义分割网络
GP-S3Net:グラフベースの汎光スパーススパース意味分割ネットワーク
GP-S3Net:그림 기반 전경 희소 의미 분할 네트워크
GP-S3Net: una red de segmentación semántica escasa basada en gráficos
GP-S3Net: un réseau de segmentation sémantique clairsemé basé sur des graphiques
GP-S3Net: разделенная сеть на основе панорамного изображения
Ryan Razani, Ran Cheng 程冉, Enxu Li, Ehsan Taghavi, Yuan Ren, Liu Bingbing
Huawei Noah’s Ark Lab, Toronto, Canada
arXiv, 18 August 2021
Abstract

Panoptic segmentation as an integrated task of both static environmental understanding and dynamic object identification, has recently begun to receive broad research interest. In this paper, we propose a new computationally efficient LiDAR based panoptic segmentation framework, called GP-S3Net.

GP-S3Net is a proposal-free approach in which no object proposals are needed to identify the objects in contrast to conventional two-stage panoptic systems, where a detection network is incorporated for capturing instance information. Our new design consists of a novel instance-level network to process the semantic results by constructing a graph convolutional network to identify objects (foreground), which later on are fused with the background classes. Through the fine-grained clusters of the foreground objects from the semantic segmentation backbone, over-segmentation priors are generated and subsequently processed by 3D sparse convolution to embed each cluster. Each cluster is treated as a node in the graph and its corresponding embedding is used as its node feature. Then a GCNN predicts whether edges exist between each cluster pair.

We utilize the instance label to generate ground truth edge labels for each constructed graph in order to supervise the learning. Extensive experiments demonstrate that GP-S3Net outperforms the current state-of-the-art approaches, by a significant margin across available datasets such as, nuScenes and SemanticPOSS, ranking first on the competitive public SemanticKITTI leaderboard upon publication.
arXiv_1
arXiv_2
arXiv_3
arXiv_4
Reviews and Discussions
https://www.hotpaper.io/index.html
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
Advanced biological imaging techniques based on metasurfaces
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
High-precision multi-focus laser sculpting of microstructured glass
Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
Data-driven polarimetric approaches fuel computational imaging expansion
An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper