MMM
YYYY
Digital Predistortion for Concurrent Dual-band Millimeter Wave Analog Multibeam Transmitters
并行双频毫米波模拟多波束发射机的数字预失真
同時デュアルバンドミリ波アナログマルチビーム送信機用のディジタルプリディストーション
병렬 이중 주파수 밀리미터 파 시 뮬 레이 션 다 중 빔 송신기 의 디지털 예비 일 그 러 짐
Predistoración digital del transmisor analógico multihaz de onda milimétrica de doble frecuencia paralela
Pré - distorsion numérique d'un émetteur multifaisceaux analogique à ondes millimétriques à double fréquence parallèle
цифровое предварительное искажение аналогового многолучевого передатчика с параллельными двухчастотными миллиметровыми волнами
Qian Wu ¹, Jianxin Jing ¹ ², Xiao-Wei Zhu 朱晓维 ¹, Chao Yu 余超 ¹ ³
¹ State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
中国 南京 东南大学毫米波国家重点实验室
² Huawei Technol. Co., Ltd., Shanghai 200120, China
中国 上海 华为技术有限公司
³ Purple Mountain Laboratories, Nanjing 211111, China
中国 南京 紫金山实验室
IEEE Transactions on Circuits and Systems II: Express Briefs, 16 August 2021
Abstract

This brief proposes a novel digital predistortion (DPD) technique to linearize concurrent dual-band millimeter wave (mmWave) analog multibeam transmitters. Beams at the same frequency band give full play to the spatial multiplexing, so as to improve spectrum utilization. By means of detailed analysis of the system characteristics, a DPD model is proposed to effectively eliminate the distortions caused by power amplifiers (PAs) including nonlinearity, memory effect, the intermodulation distortion (IMD) between two different frequency bands, and the multibeam interference incurred in undesirable sidelobes in the main beam direction simultaneously.

To validate the proposed idea, a test bench of mmWave analog multibeam transmitter utilizing Butler matrix was designed, and then it was stimulated by a concurrent dual-band signal at 26.91 GHz and 27.09 GHz, respectively. Compared with existing DPD techniques, the proposed method is suitable for compensating the distortions in dual-band analog multibeam transmitters, which has shown its great potential for the applications in future mmWave concurrent dual-band multibeam wireless communication systems.
IEEE Transactions on Circuits and Systems II: Express Briefs_1
IEEE Transactions on Circuits and Systems II: Express Briefs_2
Reviews and Discussions
https://www.hotpaper.io/index.html
High-resolution tumor marker detection based on microwave photonics demodulated dual wavelength fiber laser sensor
High performance laser induced plasma assisted ablation by GHz burst mode femtosecond pulses
Sequential harmonic spin–orbit angular momentum generation in nonlinear optical crystals
Advanced biological imaging techniques based on metasurfaces
Orthogonal matrix of polarization combinations: concept and application to multichannel holographic recording
High-precision multi-focus laser sculpting of microstructured glass
Multi-physical field null medium: new solutions for the simultaneous control of EM waves and heat flow
Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
Data-driven polarimetric approaches fuel computational imaging expansion
An externally perceivable smart leaky-wave antenna based on spoof surface plasmon polaritons
The possibilities of using a mixture of PDMS and phosphor in a wide range of industry applications
Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper