Deep learning enables temperature-robust spectrometer with high resolution
深度学习使具有高分辨率的温度稳定型光谱仪成为可能
ディープラーニングにより、高分解能の温度に強い分光計が可能になります
딥 러닝을 통해 높은 분해능으로 온도에 강한 분광계 구현
El aprendizaje profundo permite un espectrómetro resistente a la temperatura con alta resolución
L'apprentissage en profondeur permet un spectromètre résistant à la température avec une haute résolution
Глубокое обучение делает возможным термостойкий спектрометр с высоким разрешением
Nanophononics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
中国 深圳 深圳大学 深圳市微尺度光信息技术重点实验室 纳米光子学研究中心
Traditional multi-mode fiber spectrometers rely on algorithms to reconstruct the transmission matrix of the fiber, facing the challenge that the same wavelength can lead to many totally de-correlated speckle patterns as the transfer matrix changes rapidly with environment fluctuations (typically temperature fluctuation).
In this manuscript, we theoretically propose a multi-mode-fiber (MMF) based, artificial intelligence assisted spectrometer which is ultra-robust to temperature fluctuation. It has been demonstrated that the proposed spectrometer can reach a resolution of 0.1 pm and automatically reject the noise introduced by temperature fluctuation. The system is ultra-robust and with ultra-high spectral resolution which is beneficial for real life applications.