MMM
YYYY
Adversarial Reciprocal Points Learning for Open Set Recognition
开放集识别的对抗性互反点学习
オープンセット認識のための敵対的逆点学習
개방 집합 식별 에서 의 대항 성 상호 반 점 학습
Aprendizaje de puntos de reacción mutua en el reconocimiento de conjuntos abiertos
L'apprentissage des points d'opposition mutuelle dans la reconnaissance des ensembles ouverts
изучение противоположных точек в распознавании открытых наборов
Guangyao Chen 陈光耀 ¹, Peixi Peng 彭佩玺 ¹, Xiangqian Wang ², Yonghong Tian 田永鸿 ¹
¹ School of Electronics Engineering and Computer Science, Peking University, 12465 Beijing, Beijing, China, 100871
中国 北京 北京大学信息科学技术学院
² AI Application Research Center, Huawei Technologies Co Ltd, 115371 Shenzhen, Guangdong, China
中国 广东 深圳 华为技术有限公司 AI应用研究中心
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24 August 2021
Abstract

Open set recognition (OSR), aiming to simultaneously classify the seen classes and identify the unseen classes as unknown, is essential for reliable machine learning. The key challenge of OSR is how to reduce the empirical classification risk on the labeled known data and the open space risk on the potential unknown data simultaneously.

To handle the challenge, we formulate the open space risk problem from the perspective of multi-class integration, and model the unexploited extra-class space with a novel concept Reciprocal Point. Follow this, a novel Adversarial Reciprocal Point Learning framework is proposed to minimize the overlap of known distribution and unknown distributions without loss of known classification accuracy. Specifically, each reciprocal point is learned by the extra-class space with the corresponding known category, and the confrontation among multiple known categories are employed to reduce the empirical classification risk.

An adversarial margin constraint is proposed to reduce the open space risk by limiting the latent open space constructed by reciprocal points. Moreover, an instantiated adversarial enhancement method is designed to generate diverse and confusing training samples. Extensive experimental results on various benchmark datasets indicate that the proposed method is significantly superior to existing approaches and achieves state-of-the-art performance.
IEEE Transactions on Pattern Analysis and Machine Intelligence_1
IEEE Transactions on Pattern Analysis and Machine Intelligence_2
IEEE Transactions on Pattern Analysis and Machine Intelligence_3
Reviews and Discussions
https://www.hotpaper.io/index.html
Separation and identification of mixed signal for distributed acoustic sensor using deep learning
Scale-invariant 3D face recognition using computer-generated holograms and the Mellin transform
Partially coherent optical chip enables physical-layer public-key encryption
Advanced applications of pulsed laser deposition in electrocatalysts for hydrogen-electric conversion systems
A review on optical torques: from engineered light fields to objects
IncepHoloRGB: multi-wavelength network model for full-color 3D computer-generated holography
Dual-band-tunable all-inorganic Zn-based metal halides for optical anti-counterfeiting
Superchirality induced ultrasensitive chiral detection in high-Q optical cavities
Unsupervised learning enabled label-free single-pixel imaging for resilient information transmission through unknown dynamic scattering media
Simultaneous detection of inflammatory process indicators via operando dual lossy mode resonance-based biosensor
Noncommutative metasurfaces enabled diverse quantum path entanglement of structured photons
Halide perovskite volatile unipolar nanomemristor



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper