MMM
YYYY
A universal spray printing strategy to prepare gradient hybrid architectures
一种制备梯度混合结构的通用喷印策略
勾配ハイブリッドアーキテクチャを準備するためのユニバーサルスプレー印刷戦略
그래디언트 하이브리드 아키텍처를 준비하기 위한 보편적인 스프레이 프린팅 전략
Una estrategia de impresión por pulverización universal para preparar arquitecturas híbridas degradadas
Une stratégie universelle d'impression par pulvérisation pour préparer des architectures hybrides à gradient
Универсальная стратегия распылительной печати для создания градиентных гибридных архитектур
Lingyu Du, Songshan Bi 毕嵩山, Yang Hu 胡阳, Rui Wang 王瑞, Jiacai Zhu, Minghui Zhang 张明慧, Zhiqiang Niu 牛志强
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin, P. R. China
中国 天津 南开大学化学学院 新能源转化与存储交叉科学中心 先进能源材料化学教育部重点实验室
Carbon Energy, 21 March 2022
Abstract

Functionally gradient materials (FGMs) have attracted tremendous attention due to their unique properties and structures. However, it is still a great challenge to prepare scalable FGMs by a universal, cost-effective, and highly efficient method. Here, a strategy of combining in situ concentration regulation and spraying is developed to fabricate continuously gradient composite films (GCFs), where the component gradient variation can be well controlled.

This strategy is universal and versatile, which is beneficial to inducing different components into GCFs with gradient distributions and further constructing them with diverse configurations on various substrates. The gradient design endows the composite films with excellent mechanical strength and gradient electron transport pathways, which ensures that GCFs directly serve as the electrodes in electrochemical devices.

As a proof of concept, free-standing GCFs based on V2O5 nanomaterials are used as cathodes of aqueous zinc-ion batteries. The resultant devices deliver superior electrochemical performances in comparison with the counterparts of homogeneous case. Therefore, this universal strategy provides a promising route in the scalable production of FGMs and further extends their applications in various fields.
Carbon Energy_1
Carbon Energy_2
Carbon Energy_3
Carbon Energy_4
Reviews and Discussions
https://www.hotpaper.io/index.html
Spin-dependent amplitude and phase modulation with multifold interferences via single-layer diatomic all-silicon metasurfaces
Highly sensitive laser spectroscopy sensing based on a novel four-prong quartz tuning fork
A novel approach towards robust construction of physical colors on lithium niobate crystal
Multi-photon neuron embedded bionic skin for high-precision complex texture and object reconstruction perception research
Single-beam optical trap-based surface-enhanced raman scattering optofluidic molecular fingerprint spectroscopy detection system
High-frequency enhanced ultrafast compressed active photography
Efficient generation of vectorial terahertz beams using surface-wave excited metasurfaces
High-efficiency RGB achromatic liquid crystal diffractive optical elements
On-chip light control of semiconductor optoelectronic devices using integrated metasurfaces
Ferroelectric domain engineering of lithium niobate
Smart reconfigurable metadevices made of shape memory alloy metamaterials
Direct detection with an optimal transfer function: toward the electrical spectral efficiency of coherent homodyne detection



Previous Article                                Next Article
About
|
Contact
|
Copyright © Hot Paper